Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Comp Pathol ; 203: 31-35, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37244160

RESUMO

The Greenland shark (Somniosus microcephalus) is a large species of shark found in the North Atlantic and Arctic Oceans and is believed to be the longest living vertebrate. Relatively little is known about its biology, abundance, health or diseases. In March 2022, only the third reported UK stranding of this species occurred and it was the first to undergo post-mortem examination. The animal was a sexually immature female, measuring 3.96 m in length and 285 kg in weight, and was in poor nutritional state. Gross findings included haemorrhages in the skin and soft tissues, particularly of the head, and silt in the stomach suggestive of live stranding, bilateral corneal opacity, slightly turbid cerebrospinal fluid (CSF) and patchy congestion of the brain. Histopathological findings included keratitis and anterior uveitis, fibrinonecrotic and lymphohistiocytic meningitis of the brain and proximal spinal cord and fibrinonecrotizing choroid plexitis. A near pure growth of a Vibrio organism was isolated from CSF. This is believed to be the first report of meningitis in this species.


Assuntos
Monitoramento Ambiental , Tubarões , Animais , Feminino , Regiões Árticas
2.
Biology (Basel) ; 10(3)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804029

RESUMO

Optimising the use of biocontrol agents (BCAs) requires the temporal tracking of viable populations in the crop phyllosphere to ensure that effective control can be achieved. No sensitive systems for quantifying viable populations of commercially available BCAs, such as Bacillus subtilis and Gliocladium catenulatum, in the phyllosphere of crop plants are available. The objective of this study was to develop a method to quantify viable populations of these two BCAs in the crop phyllosphere. A molecular tool based on propidium monoazide (PMA) (PMAxx™-qPCR) capable of quantifying viable populations of these two BCAs was developed. Samples were treated with PMAxx™ (12.5-100 µM), followed by 15 min incubation, exposure to a 800 W halogen light for 30 min, DNA extraction, and quantification using qPCR. This provided a platform for using the PMAxx™-qPCR technique for both BCAs to differentiate viable from dead cells. The maximum number of dead cells blocked, based on the DNA, was 3.44 log10 for B. subtilis and 5.75 log10 for G. catenulatum. Validation studies showed that this allowed accurate quantification of viable cells. This method provided effective quantification of the temporal changes in viable populations of the BCAs in commercial formulations on lettuce leaves in polytunnel and glasshouse production systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...